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The steady-state response of a nonlinear medium to several simultaneously applied monochromatic elec
tromagnetic fields is described by the density matrix method. A Fourier series expansion in terms of ascend
ing powers of the amplitudes of the applied fields is especially useful to describe the parametric response in 
spectral regions, where the absorption is small. As the resonances of the material system are approached, the 
general formalism exhibits the mixture and interference between parametric processes and single- and 
multiple-photon absorption and emission processes. Previously discussed examples of the two-level and three-
level system are generalized. The reaction of the general nonlinear medium on the electromagnetic fields is 
incorporated. 

I. INTRODUCTION 

IN an ideal lossless medium only parametric processes 
occur, as transitions between energy levels of the 

material system are confined to 5-function type singular
ities as a function of the frequency of the photons. The 
energy of the photons remains conserved. Nonlinear 
scattering processes in which three or more photons 
participate were considered by Blaton1 and Guttinger.2 

The corresponding nonlinear part of the dielectric 
polarization, which results from the interference 
between all such nonlinear scattering processes by all 
atoms in the crystal lattice, was calculated by Arm
strong et al? for a lossless medium. 

If one wishes to generalize this theory to include 
damping, one is immediately confronted with the fact 
that the parametric processes become interwoven with 
processes in which one or more photons are absorbed or 
emitted. Since the damping mechanism is statistical in 
nature and results from the interaction with random 
photon and phonon fields about which our information 
is far from complete, the use of the density matrix 
formalism is appropriate. Karplus and Schwinger4 used 
it to describe the saturation of microwave resonances. 
This may be considered as a kind of nonlinear effect 
in which successive absorption and emission of quanta 
at the same frequency takes place. 

This formalism was extensively developed, especially 
in the study of nuclear magnetic relaxation.5-10 The 
interest here will be limited to dilute systems, in which 
the interaction between particles is very small compared 
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Research, Signal Corps of the U. S. Army, and U. S. Air Force 
and the Advanced Research Projects Agency. 
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to the energy separation between levels, and also small 
compared to differences in spacing between energy 
levels of an individual particle. Equally spaced levels 
are not considered here. These assumptions are usually 
well met in the optical region of the spectrum, and may 
on occasions also be valid in dilute paramagnetic 
materials at microwave frequencies. Furthermore, the 
random interaction Hamiltonian will usually have a 
constant spectral density over a frequency range 
larger than the line width of individual transitions. They 
are physically caused by radiative and nonradiative 
processes in which photons and/or phonons are absorbed 
and emitted. The interaction with random or thermal 
radiation fields and the lattice vibrations includes the 
effects of spontaneous emission. In the parlance of 
magnetic relaxation the case of interest corresponds to 
the limit of "rapid motion in an isotropic medium." 
Under these circumstances the effect of the random 
Hamiltonian on the motion of the density matrix is 
given by phenomenological damping terms, 

KyPaa/Ot)random 2-* -K-aannPnn 2-f ^anPn 

-YL^n 

(dpab/dt) random— — Rababpab — ~1?abPab' 

(1.1) 

(1.2) 

The 91 diagonal elements relax in a combined fashion 
leading to 91—1 longitudinal relaxation times. Their 
inverses are the eigenvalues of the determinant of the 
wnn>. Each off-diagonal element decays with a character
istic transverse relaxation time Ta&

-1 which has, in 
general, both adiabatic and nonadiabatic contributions. 
The latter are caused by the finite lifetime related to the 
transition probabilities wan, Wbn- In the case of only 
two energy levels one has rn0nad= (l/2Ti) = (wab+Wba)-
The former corresponds to a random modulation of the 
splitting hvba, due to diagonal elements of the random 
perturbation Hamiltonian as may e.g., be caused by 
lattice vibrations. In the special case that the only 
random perturbation is nonadiabatic and corresponds 
to spontaneous emission of photons from levels a and 
b to other lower levels, the relaxation terms may be 
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expressed by the anticommutator, 

( - P ) = -(rP+Pr), (i.3) 
am p ing 

where T is a diagonal matrix. 
In the field of magnetic resonance, relaxation theory 

has been developed to an advanced stage9 in which the 
interaction between individual spins may have a large 
influence on the relaxation behavior. When the interac
tion between individual atoms or ions is ignored, the 
relaxation terms retain the same form in the presence of 
applied periodic fields. There is, strictly speaking, a 
slight modification because the system tends to relax 
to thermal equilibrium at the instantaneous value of the 
applied fields in the limit of relaxation by rapid motion. 
The assumption that the relaxation terms always retain 
the form given by Eqs. (1.1) and (1.2) is, however, a 
very good approximation for the physical situations 
encountered in lasers and nonlinear optical devices. 
Effects of inhomogeneous broadening, strain broadening 
of optical lines, etc., can always be taken into account 
by integrating the final results of this report over a 
distribution of the resonant frequencies of the atomic 
system. 

The total Hamiltonian will consist of the part X A 
which determines the unperturbed energy levels of the 
atomic system, the interaction 3CCOh of this system with 
one or more applied monochromatic fields, and a 
random Hamiltonian 3Crandom, which includes not only 
the photon and phonon relaxation processes already 
discussed, but also applied random pump fields. If a 
laser crystal is e.g., surrounded by a flash lamp, it is 
subjected to random fields characterized by different 
temperatures depending on whether the solid angle sub
tends an element of the flash lamp or not. In this case, 
the transition probabilities due to random fields obey 
the relationship 

with 
wba

Q=WabQ exp{ — hvba/kT®}. 

The equation of motion for the density matrix can thus 
be written, 

random j (1.4) 

where the last term is given by Eqs. (1.1) and (1.2). 
In this form various authors have discussed the response 
of a material system subjected simultaneously to two 
applied periodic fields. Particular attention has been 
paid to two- and three-level maser systems. Javan,11 

Winter,12 and Yatsiv13 emphasize the importance of 
two-quantum Raman processes which may occur in 

11 A. Javan, Phys. Rev. 107, 1579 (1957). 
12 J. M. Winter, J. Phys. Radium 19, 802 (1958); and A. Javan, 

ibid. 19, 806 (1959). 
« S. Yatsiv, Phys. Rev. 113, 1538 (1959). 

such systems. Anderson14 clearly describes a basic 
parametric process for a three-level system. Clogston15 

has given a formula which contains all these processes. 
Although he emphasizes the operation of a three-level 
maser, he did not omit the parametric term, as Fain16 

has asserted. The latter17 has also used the density ma
trix formalism to discuss the operation of maser oscil
lators. Kastler18 and his co-workers19,20 have extensively 
used this formalism to describe the simultaneous action 
of radiofrequency and optical fields, as have Wilcox and 
Lamb.21,22 For a two-level system the density matrix 
formalism is identical with the classical Bloch equations 
for magnetic resonance.23 Harmonic generation in ferro
magnetic resonance, a parametric process, was studied 
theoretically and experimentally at an early date by 
Ayres, Vartanian, and Melchor.24 

All these papers—and many others which cannot 
be referred to here—emphasize one or more aspects of 
the general steady-state response of an atomic system 
subjected to a number of simultaneous periodic pertur
bations. Usually the interest has been focused on 
situations at or near resonances of the atomic system. 
In this report special emphasis will be given to the 
parametric case in which none of the frequencies is 
near resonance. A systematic general procedure is 
presented in Sec. I I . All previous results may be 
derived by it, if approximations suitable in each 
particular situation are made. The nonlinear steady-
state response of a two-level system will be considered 
in Sec. I I I . Both parametric and Raman-type processes 
are exhibited. The well-known example of a three-level 
system subjected to simultaneous fields at three fre
quencies is reconsidered in Sec, IV, and generalizations 
of the results of Clogston15 and Javan12 are obtained. 
A brief account of this work was presented at the Paris 
conference on quantum electronics.25 The reaction of 
the nonlinear medium on the electromagnetic fields is 
described in Sec. V. All maser, Raman maser, and 
parametric effects are taken into account in this 
formulation. 
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Phys. 28, 49 (1957). 
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Phys. 27, 188 (1956). 
25 N. Bloembergen, in Proceedings of the Third International 

Conference on Quantum Electronics (Dunod Cie., Paris, and 
Columbia University Press, New York, 1963). 



Q U A N T U M - T H E O R E T I C A L C O M P A R I S O N A39 

II. GENERAL CALCULATION OF NONLINEAR 
CONDUCTIVITIES AND SUSCEPTIBILITIES 

A steady-state solution for the density matrix in 
ascending powers of the coherent periodic perturbations 
may be found from the following hierarchy of equations, 

iftp<°>= [ 5 C A , P ( 0 ) ] + ^ ( a M ) p d xnping<
0) , 

*p(1)=[^,p(1)]+*(a/a/)pdaraping(
1)+[5Ceoh,p(0)], 

ifip^=[ac^p^D+^Ca/dOpdamping^+CaCooiijP^0]. 
(2.1) 

The first equation gives the density matrix in thermo
dynamic equilibrium. The linear response of the system 
is determined by the second equations; p(1) contains the 
same frequencies as 3CCOh. In second approximation the 
steady response p (2) contains sum, difference, and 
second harmonic frequencies, as well as dc terms. The 
dc terms are a first approximation to incipient saturation 
effects and arise as the beat between positive and 
negative frequency terms in the 5CCOh and p (1), respec
tively. Insertion of p(2) into the equation for p(3) gives 
the Fourier components in the next approximation, etc. 
Note that in the steady-state the differentiation on the 
left side is replaced simply by — iXXdb^an), where the 
(+co;)-component has a time dependence exp(—icait), 
the (—coi) -component varies as exp(+ico2/) and %i is an 
integer. Each successive step corresponds, therefore, to a 
very simple algebraic operation, relating the Fourier 
components in each approximation to those of the pre
ceding one. Price26 has discussed the general nonlinear 
response in the time domain as an iterated integration 
over the unit impulse response function, but the steady-
state response to periodic forces is most easily calculated 
in the frequency domain. 

Although this formalism is not restricted to electro
magnetic interactions and would apply equally well, 
for example, to the response of a system to applied 
periodic mechanical vibrations, the explicit form for 
3CCOh used in the following discussion will correspond to 
the semiclassical, nonrelativistic interaction of a bound 
electron with charge — e and a finite number of electro
magnetic modes, 

3Ccoh= ( p . A + A . p ) + — S - V X A + A-A, (2.2) 
2mc mc 2mc2 

with the vector potential of the electromagnetic waves 
given by 

M 

A(r,/) = | E [Am(r) exp(—iumt) 

+ Am*(r)exp(icom/)], (2.3) 

Am(r) = (c/iwm)E(km,wTO)exp(ikm- r ) . (2.4) 

26 P. J. Price, Phys. Rev. 130, 1792 (1963); also P. L. Kelley, 
J. Phys. Chem. Solids 24, 607 (1963). 

The current density operator is given by27 

j ( r 0 ) = - — j r « ( r - r o ) ( p + - A ) + ( p + - A V r - r 0 ) l 

+ 2 C 5 ( r - r 0 ) ( p X s ) - ( p X s ) 5 ( r - r 0 ) ] } , (2.5) 

where 
5(r— r 0 )= |r0) ( r 0 | . 

The Fourier components of the current density in wave 
vector space are 

j ( k ) = f d r e x p ( - * k - r ) j ( r ) . (2.6) 

They have matrix elements 

e 
j n ' « = < y | j ( k ) | n ) = (»'|exp(—fk-r) 

2m 

X(P+-AWp+-AJ exp(-ft-r) 

- 2 i f t s X k e x p ( - i k - r ) | » > . (2.7) 

The expectation value of the current density as a 
function of the time is given by 

<j(k,0> = TrG(*,0p(0) = Z E Jn»'(k,*W»(0. (2.8) 
n n' 

This expectation value can again be decomposed into 
Fourier components of successive higher approxima
tions.28 The nth. approximation can be written as 

<i<")(k,<)>=EEGo(k))...pv.<»>(<) 
n n' 

+ E E GiOM)W»'.("-1) (0, (2.9) 

where ji(k) is that part of the current-density operator 
linear in the field amplitude. 

The linear conductivity tensor is defined by the ratio 
of the first-order approximation to the current density 
expectation value at frequency co with wave vector k 
and the amplitude of the electric field with the same 
frequency and wave vector 

(jO>(k,co))=<r(W)k)E(k)W). (2.10) 

In a similar manner higher order conductivity tensors 
are defined, 

(j("(k=Ek (,w=i4 

=or N L (k r • -kn, wr • •cow)E(k1,coi)- • -E(kn,con). (2.11) 

27 See, for example, A. Messiah, Quantum Mechanics (Inter-
science Publishers, Inc., New York, 1961). 

28 Y. R. Shen, Phys. Rev. (to be published). 
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Note that a particular applied frequency dhwn may be 
repeated several times. Therefore, the third-order 
current density will contain e.g., a component at the fre
quency coi which is proportional to E(a>i)E*(—coi)E(coi) 
and which may be regarded as a saturation correction 
to J(1)M-

The expectation value of both the linear and nonlinear 
parts of the current density may be inserted as a source 
term in Maxwell's equations, 

l d b 
V X e = 

c dt 
(2.12) 

1 de 4-7T 
V X b - H <j(r,0>, 

c dt c 

where e and b are the vacuum fields. 
A detailed discussion of the influence of the nonlinear 

source terms on the propagation of electromagnetic 
waves in nonlinear media has been given elsewhere.3 

Here only the outline for the quantum-mechanical 
calculation of these source terms is presented. 

In many practical situations, e.g., in the case of a 
host lattice containing a dilute concentration of transi
tion metal ions, it is of interest to exhibit more explicitly 
the various multipole moments that are present in a 
matrix element as given by Eq. (2.7). Fiutak29 has 
shown in a general manner that the perturbation 3CCOh 
given by Eq. (2.2) can be transformed canonically into 
the equivalent form, 

0 C o o h
/ = - 5 p . E - a » . H - Q : v E + - - - . (2.13) 

All expectation values of physical quantities derived 
from this equivalent Hamiltonian are the same as for 
the original one, to which it is related by a canonical 
transformation. The current density source term is now 
determined from 

rd<?P> d "I 
<j(r)>=# +cVX{m) V - ( Q ) + . • • , (2.14) 

L dt dt J 

where N is the number of atomic systems per unit 
volume. 

The expansions Eqs. (2.13) and (2.14) into multipole 
moments are not unique and depend on the choice of 
origin. Physical considerations often indicate a desirable 
choice, e.g., the center of a paramagnetic ion in a host 
lattice. If only dipole matrix elements are retained, the 
dipole source terms may be incorporated into Maxwell's 

29 J. Fiutak, Can. J. Phys. 41, 12 (1963). The build-up of 
diamagnetic energy is not correctly represented by Eq. (2.13). 
The terms of the Jl2-type in Eq. (2.2) give the correct diamagnetic 
energy. This discrepancy is of no importance for the nonlinearities 
discussed in this paper. 

equations in the usual way, 

l d H 47rdM 
V X E = , (2.15) 

c dt c dt 

1 aE 4TT dP 
V X H = + , (2.16) 

c dt c dt 

r(?,t) = NTr($p(r,t)), (2.17) 

M(r ,0 = iVrTr(SHp(rJ0). (2.18) 

Corrections for dense optical media have been discussed 
elsewhere.3 

The advantage of the transformed Hamiltonian 
Eq. (2.13) is that noncommuting operators p and r do 
not occur in the same calculation. Quite a bit of care 
must be taken to calculate the linear electric suscep
tibility from the Hamiltonian with the momentum 
operators.30 The complexity increases rapidly for the 
higher order nonlinear terms. The expectation value 
of the electric dipole moment Tr (^p ) can readily be 
evaluated from the Hamiltonian Eq. (2.13). In a 
perturbation calculation a power series expansion in the 
electric and magnetic field amplitudes results. 

The lowest order nonlinear term in a system that 
lacks inversion symmetry is the electric dipole moment 
proportional to a quadratic function of the electric 
field amplitudes. Consider explicitly the Fourier 
component of the dipole moment at the sum frequency 
co = coi+co2, induced by an electric field with components 
at coi and co2. The Hamiltonian for this problem is 

5Ccoh'= - ^ - K E i V ^ H - E i e - ^ ) 

-5P-KE2V^+E2e-^). 
I t will be assumed that the electric dipole moment 
operator has only off-diagonal elements. (A case where 
diagonal elements are important will be discussed in 
the next section.) A typical off-diagonal element of 
the density matrix obeys the equation 

/l%pnn':=: \\&nn' ^1 nn'jPnn' 

i 2—i \y^-,nn"Pn"nf Pnn"^n'fn') • K^"*-') 
n" 

The first or linear approximation to these off-diagonal 
elements is 

\Pn"n' f 

^5P«"n'*Ei 
= ; (+P»' 'n ' 'C 0 )-p«'»' ( 0 )) , (2.20) 

and similar expressions for frequency components at 
—coi and ±co2. 

30 P. A. M. Dirac, Proc. Roy. Soc. (London) A114, 143, 720 
(1927). See also, H. A. Kramers, Quantum Mechanics (North-
Holland Publishing Company, Amsterdam, 1959), pp. 482 ff. 
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In second approximation one finds 

{Pn»'<2)} ("1+W2) 

ift-2CP»»--E2) (as.,,., -Ex) 
= Z : 

n"^n,nf CO1+CO2 — 0)nn
,~\~'l^ nn' 

, , ( 0 ) _ n „ ,,(0) n (0) 
n.'in.' \Jri."in.'' n~~ 

„ //«» Pn'n' Pn"n" Pnn Pn"n" 

. + . 
*fr-2(*«»'"Ei) (¥',»»'-E,) 

X 

n 

n , , ( 0 ) _ _ n , , , , ( 0 ) n ( 0 ) _ 

yn n Un.'''n'r u~,~* 

.«2 

. + . I (2.21) 

The expectation value of the dipole moment at co3 

proportional to the product of the field amplitudes at 
coi and co2 may be calculated. A third-rank nonlinear 
polarizability tensor may be denned. Its component 
fink is given by the following relationship: 

<<P<(2)(u8=«i+tt2)> = l ^ 

= E E ( ^ ) n n ' { p n ' n ( 2 ) } ( - 1 + - | ) . (2.22) 
n n' 

The factor \ is inserted so that for real (3 and real fields 
Ei coscoi/ and E2 cosco2£, the real polarization is given by 
tyi COSC03/. The expression is symmetrical in the compo
nent Ej(coi) and i^(co2). This follows immediately from 
the detailed form of Eq. (2.21). 

If the damping is negligible, the terms iTnn' in the 
denominators of Eq. (2.21) can be omitted. This 
situation is important in the harmonic generation of 
light, when all optical resonances are far removed. When 
the denominators are real and contain only frequency 
differences, the terms in Eq. (2.21) can be rearranged 
and relabeled. The ijk component of the third-rank 
polarizability tensor can be written in the absence of 
damping as, 

Pijk + (6>i)gn((S>j)nn' 

g^n,nf 

nn' 

l \(si)n'g\vjjgn\^k)nn'B nn' 

1 \(ji)n'n\(jj)gn' \U kjng^nn' 
+ ((Pdn'ni^ngWgn'C'nn^Pgg™ , (2.23) 

with 

•"• nn 

•Bnn 

•D nn 

c 
c 

= ( 2 ^ ) - 1 [ ( c 0 3 - C O n , ) - 1 ( ^ l - ^ n ' , ) - 1 ] , 

= (2^2)-1[(c03 —COn0)~
1(W2—COn'ff)"1], 

= (2*2)- l [ (c0 8 +C0n ' , )" 1 («2+«n, ) - 1 ] , 

= (2hT1L^Z+^g)-1^l+^ng)-1l, 
= - (2^2)"1[(co1+o;ng-1(co2-con,)-1], 

- - (2»2)- 1 [ (««+«n' f l ) - 1 («l-« . , ) - 1 ] . 

When the additional assumption is made that the 
matrix elements (P„n' are real, the expression Eq. (2.23) 
is identical with Eqs. (2.13) and (2.14) of Armstrong3 

el at. 
In a similar manner, higher order nonlinear electric 

and magnetic susceptibilities may be determined. Not 
only parametric effects, but also saturation, maser, and 
Raman maser action are described by these nonlinear 
complex susceptibilities. Far away from all resonance 
transitions the parametric effects dominate. In this case, 
the hierarchy in terms of ascending powers of the field 
amplitudes is especially useful. In case of resonance, one 
often wishes to retain all powers of the fields for the 
Fourier components of the density matrix at resonance 
to take complete cognizance of saturation effects. 
One decides in this case, a priori, which Fourier compo
nents in each of the matrix elements of p are to be 
retained and which are to be truncated off as small 
nonsecular terms. Sorting out the terms on the left and 
right with the same frequency dependence in the 
equations of motion (1.4) leads to a set of simultaneous 
linear algebraic equations. In principle, the Fourier 
components of the density matrix elements and, there
fore, of expectation values of the dipole moments can be 
determined in a straightforward algebraic manner. In 
practice, the number of unknowns is large even in 
relatively simple situations with only two or three 
energy levels. Computer solutions are indicated, but 
they tend to obscure the basic physical processes in the 
high-order interference of parametric, maser, Raman 
maser and other multiple-photon processes. 

The general methods outlined in this section will be 
applied and illustrated for a two-level and a three-level 
system. In these cases, the basic nonlinear mechanisms 
can be unraveled. The analysis will show when param
etric and when maser effects are dominant and how they 
interfere. 

If the applied electric or magnetic fields contain a dc 
component, i.e., if one of the applied frequencies is zero, 
this formalism contains, as special cases, the Pockels 
and quadratic electro-optic effect, as well as the 
Faraday and quadratic magnetic effects. In the case of 
applied dc fields, some care must be taken to correct 
the relaxation terms as well. The paramagnetic part of 
the Faraday effect27 is, e.g., due to the change in 
population of states by the application of the dc 
magnetic field. The relaxation is towards thermal 
equilibrium for the instantaneous values of the applied 
fields as mentioned earlier. 

III. NONLINEAR SUSCEPTIBILITIES OF A 
TWO-LEVEL SYSTEM 

Consider a system with two energy levels | a) and | b) 
with an energy separation, 

(b\3CA\b)-(a\WA\a)=ho>ba. (3.1) 
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A. Two Rotating Fields 

Two periodic perturbations at frequencies o?i and C02 
are assumed to have only off-diagonal elements. In 
the language of magnetic resonance, the system is 
subjected to two rotating high-frequency fields. If 
W2=— coi, the problem of a linear polarized high-fre
quency field results. A notation suggestive of magnetic 
dipole transitions will be used, although the results are 
valid for any two-level system.10,22 

With 

WbaCOh=-»ba(H1e-i"lt+H2e~i«*t) = WabCOh* 

the equations of motion are in this case, with ra&~1= T2, 

ihpab= —h(o>ba+i/T2)pab+3tabC°h(pbb—paa) , (3.2a) 

ihpba=h(0)ba—i/T2)pba—^baCOh(pbb—paa), (3.2b) 

ih(pbb-paa) = 2(3CbaC°hPab-pbaWabCOh) 
— (ih/Ti) (Pbb—Paa—Pbb°+Paa°) , (3.2c) 

P a a + P 6 6 = l . (3.2d) 

In first order, one finds the well-known linear approx
imation, 

— tr^baHi 
Pba (1) ( « l ) = 

+COi — 0)ba+i/T2 

{Paa^-Pbb™), 

and a similar expression for p&a(1)(co2), Paba) (wi), and 
pa&

(1)(co2). Note that p&a(+ui) = +pa&*(—«i) in the 
case of damping. In second approximation the difference 
between the diagonal elements of the density matrix has 
Fourier components at o>i—o>2, co2—coi and dc terms, 

(Pbb^-Paa^)^-^ 

2ft-2 |M a 6 |2#1#2*f 1 

coi—o)2"\-i/Ti i—o)2—oiab-\~i/T 2 

1 

coi—ccba+i/T2 
(p65 (O)-0aa (O)) 

(P6 (2) - (2)U«2-wi) = [ ( P 6 6
( 2 ) - P « a ( 2 ) ) ( w l - W 2 ) ] * . (3.3) :>&&v"'— p, 

From Eq. (3.2d) we have in general, 

Pbb(o>)+paa(o)) = 0 f o r 00=^0. 

These terms are responsible for a longitudinal compo
nent of magnetization at this difference frequency. 

/9j[)fJ \(«l—W2)g—t(coi—C02) t 

= -M0{p&6(2)-Paa(2)}(wl-W2)^(wl-W2)S (3.4) 
where 

— <6|2K.|6>=/xo=+<a|gW,|a>. 

With coi= — C02, this term describes the source of second 
harmonic generation, if a magnetic resonance is driven 
by a linearly polarized high-frequency field. 

The-creation of a polarization at the difference 
frequency ±(co2—coi) is clearly a parametric process. 

Note that the phase of the magnetization at this 
frequency depends on the difference of the phases of the 
applied fields at coi and co2. Whether positive or negative 
absorption will occur at a>2—wi, depends on the presence 
and relative phase of a longitudinal magnetic field at 
this frequency. 

The dc term in second approximation describes the 
onset of saturation in the presence of two rotating fields, 

{p & &
( 2 ) -Paa ( 2 ) } d C 

--2TlT2fr2\iXab\2\H1\ 

(a>i—co&0)
27Y+l 

2TxT2h-2\fXab\2\H2\2 

(0>2 — 0)ba)2T22+l 
X { p & &

( 0 ) - P a a ( 0 ) } . (3.5) 

I t is clearly only a first approximation to the saturation 
effect, obtainable if the usual saturation denominator is 
expanded in a power series. 

If Pbb—paa in Eq. (3.2a) is replaced by the expression 
f o r pbb{ (2) . (2) the third approximation po&(3) is 
obtained. There are new frequency components at 
2a>i—a>2 and 2a>2—«i. These are parametric terms. 
For coi= — o?2 they describe the generation of third 
harmonics. 

In addition, one finds that the magnetization at a>i 
has terms proportional to \Hi\2Hi and |H2 \2Hi. The 
first always decreases the first-order absorption at coi. 
I t corresponds to an absorption and emission process at 
hcoi, and describes incipient saturation of the signal at 
coi. The second term corresponds to the absorption of a 
quantum at hcoi, and emission of a quantum at ho)2 or 
vice versa. The energy balance ±#(co2—wi) is taken up 
by the damping mechanism. This term corresponds to a 
Raman process and may either increase or decrease the 
absorption at wi. The process could be continued 
indefinitely; pbb{ (4)_ (4) may be found from p&a

(3) and 
Pab{z\ etc. This gives successive approximations in 
ascending powers of both Hi and H2. 

I t is also possible to obtain a solution correct to all 
powers of Hi, but ascending powers of H2 alone. This 
solution was already discussed by Bloch7 in terms of a 
reference frame rotating at on, in which the large 
perturbation Hi is time-independent. With the present 
method the density matrix is solved in the laboratory 
coordinate system. The steady-state solution correct to 
terms independent of H2, is of course nothing but the 
well-known saturation solution of the Bloch equations, 

PbbdG-PaadG^(pbb(0)-PaJ0)) 

i+(-coi+co&a)2r2 

x-

Pba 
(«l) = _ 

l+(-o>i+o>hayT22+\»«A2\Hi\2TlT2 

-frlnhaBi 

Ul — OJba+i/T2 

-(paad C-p&6d C). (3.6) 

Next, the terms of the density matrix elements linear 
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in H2 are sought. Equation (3.6) is still correct to this (OJ2—o)i+i/Ti){pbb~p<za}(a,2-a,l) 

= +2h~ifiabH1*pba^ - 2h-^haHtfJ"*-^, (3.8) order of approximation. The equations for 

{PM-Paa}^2-"*, P6a (w2), a n d p j ^ ^ 

are considered simultaneously, 

(0)2-Uba+i/T2)pba
M 

= ~ f e " 1 M 6 a ^ 2 ( p a a d C - p 6 6 d c ) 

+^-V6a^l{p66-Paa} ("2-Wl), 

( C 0 2 - 2C0X~ W a f c + i / r 2 ) p a 6 ( w 2 - 2 w l ) 

^ - ^ - V a ^ ^ l p ^ - p a a } ^ ^ . (3.9) 

The explicit solution for this set of three simultaneous 
equations may readily be given a physical interpretation 
in the coordinate system rotating at the frequency coi. 

(3.7) The analytic expression for p6a(w2) is 

Pba 

= ~fi~1fJibaH2(paa — pbb)dc/ ( <*>2—0)ba+i/T2 — 
oj2—o)i+i/T1—2fr2\fXab\2\Hi\2/(o)2—2o}1—o}ab+i/T2) • ) • 

(3.10) 

Assume that the two applied frequencies are sufficiently the form 
different so that they can indeed be distinguished _. h* 
physically, |co2—wil^rf1. The expression may then ^ ^ ^—VhaHie t401'=5Ca6

co 

be recast in the form, 

Pba (o>2) = — (l/D)h-WbH2l(cc2-^) 
X (co2— 2o>i—o)ab+i/T2) 

- 2 f r - * | M a 6 | 2 | f f 1 | 2 ] ( p a a ~ P 6 & ) d c , ( 3 . 1 1 ) 

Z> = (0J2—O)i)[(c02—C0i)2~ (C06o~COi)2 

—4«r-»|/*a6|»|jBri|»—r2-»] 
+i[2(co2~a J l)

2-4^2 | / ia 6 |2 | i?1 |2]r2-1 . 

Inspection of the denominator shows that the real part 
vanishes when 

0?2 ~ 6>1 = = t { (o) i ~ 0)ba) 2 

+4^-2|Ma6|2i9ri2+r2-2}+1/2. (3.12) 

This describes the resonance with respect to the effective 
field in the rotating coordinate system. The last term 
in the numerator corresponds to Raman processes; the 
first term gives the linear dispersion. Both effects are 
modified by the denominator, which takes account of 
the absorption and re-emission of an arbitrary number 
of quanta hcci, because | H112 is retained to all powers 
of the power series expansion. The parametric processes 
occur in the corresponding expressions for pbb~-paa, 
which may be obtained by substitution of Eq. (3.10) 
or (3.11) back into Eq. (3.8). 

In higher approximation the terms in H2
2 and | H2|

2 

could be calculated in an analogous manner. The 
algebraic labor increases rapidly and basic physical 
processes cannot be easily separated in higher approx
imations, when many different quantum processes 
interfere. 

B. One Rotating Field and One Longitudinal 
Oscillating Field 

In this example the negative absorption associated 
with Raman processes will be exhibited very clearly. 
The Hamiltonian of the coherent perturbations has 

uC( 
coh— . -3C66' coh— . -jA*o(H8er-W+Jff,V*-«0-

The equations of motion are now 

itlpba 

= —lXbaHie-i"lt(paa--pbb)--Mu+i/T2)pba 

-ixs{Hze-i«*t+Hz*e+™*t)pba (3.13) 
pbb— paa 

^-2ih-l(jMbaH1e-^%b-fiabH^e+i<altPba) 

fu>)ba/kT 
• (pbb — paa — pbb°+paa°)Ti H 

sinh(fio}ba/kT) 

fxo(Hze~^t+H^e+^t) 
/ 

tlO)ba 
(pb^-Paa^Tr1. (3.14) 

The assumption kT>fjLoHz, always valid in practice, 
has been made. The last term should be ignored within 
the approximations on the damping mechanism set 
forth at the beginning of this report. It takes account 
of the fact that the system relaxes toward the thermal 
equilibrium for the instantaneous Hamiltonian 3CA 
+3Ccoh(2) rather than 3CA alone. It gives rise to a small 
linear longitudinal susceptibility. 

{p& &
( 1 )~Paa ( 1 )} (-3 ) 

(fiwba/kT)fx0H,* 
<Pbb°-Paa°). (3.15) 

sinh (fto)ba/kT)fUf)ba iuzTi-jr 1 

This term is carried along into the next approximation 
only to show explicitly that its contribution is negligibly 
small. 

The lowest order nonlinear response consists of the 
usual saturation correction {p&&(2)—paai2)}do propor
tional to ji^il2, and a parametric beat for the trans
verse components of magnetization at the frequencies 
coi±a>3. This may be derived from off-diagonal Fourier 
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components such as 

{P6a(2)}(wl-W3) 

— fc-2. fr2/jL0fxbaHiH^ 

(o)l — Oiba+i/T2) (ui — 0)3 — 0)ba+i/T2) 

flWba/kT 
X(paa ( 0 ) -P66 ( 0 ) ) + 

X-

sinh (fio)ba/kT) 

fAOfXbaHlHz* 

(+ioizT1+l)fiwba(o)i—o)z~o)ba+i/T2) 

X(pbb
(0>~Paa(0)). (3.16) 

The last term arises from the first term on the right-
hand side of Eq. (3.13), when the expression Eq. (3.15) 
is substituted. I t is clearly smaller by a factor 

flO)ba/kT 

smh(fio)ba/kT) 
l^i+ih^licosrH-ii-^i 

than the first term and will, henceforth, be ignored. 
In the next higher nonlinear approximation the 

components at the original frequencies coi and ±co3 

receive corrections proportional to the intensity of the 
applied fields. 

{p&a(3)}(wl) 

fl-W^baH^Hzl^Paa'-pbb0) 

(coi—o)ba+i/T2)
2 

X [—*-
-COba+i/ToJ a+i/T2 0)1+0)3 —0)ba+i/T2-

+ terms proportional to ^11 i^i |2 (3.17) 

{p& &
( 3 )-W3 )} (»3 ) 

2*T«|M«5|Voff8|Hl| 2(P56°-Paa°) 

(o)z+i/Ti)(o)i—o)ba—i/T2)(o)i—co3—o)ba~ i/T2) 

2tl-*\»ab\2floHt\H1\*(pbb
0-Paa0) 

(caz+i/Ti) (o)i—o)ba+i/T2) (0)1+0)3—o)ba+i/T2) 
(3.18) 

Consider the case coi—co3=co&a. A two-quantum Raman 
transition is possible between levels \a) and \b), as 
indicated in Fig. 1(A). Exclude single quantum transi
tions, \-o)i+o)ha\y>T2-\ This implies c o 3 » r 2 - 1 > T r 1 . 
Under these circumstances the first terms on the right-
hand side of Eqs. (3.17) and (3.18) are dominant and 
the nonlinear susceptibilities become pure imaginary 

{Pba^} ̂ yKi=+2im-*m-w^a 1 Hz 12 

X(paa (0 )-P&&
(0)), (3.19) 

{ P a a ( 3 ) - p 6 &
( 3 ) } ( W 3 ) / ^ 3 = - 2 ^ 2 ^ - 3 C O 3 - 2 ) U 0 U a & | 2 

X | ^ l | 2 ( p a a ( 0 ) - P & &
( 0 ) ) . (3.20) 

, -w 3 -w b 0 S+(w,) 

w j »ai2-*-W3 

S z(a?3) 

>+(«,)? |s z(tu3) . 

J i_b —-* b 
|Sz(a>3) 

S+fwj) 

IT—b 

— a 

S_(cu2) 

* — a 
S+«*3>J~ 

FIG. 1. Nonlinear processes in a two-level system. A Raman 
process, in which a "transverse" quantum is emitted and a 
''longitudinal" quantum absorbed. B Two-quanta absorption. 
C Raman process, in which a "transverse" quantum is absorbed 
and a "longitudinal" quantum emitted. D Illustration of a param
etric process. I t should not be interpreted literally as a three-
photon scattering process, as explained in the text. 

For normal populations paa
i0) —p&&(0)>0, the sign of 

the susceptibility is such, that there is a positive absorp
tion at 0)1 proportional to the intensity | # 3 | 2 , but there 
is negative absorption at co3, proportional to the 
intensity | # i | 2 . This is just what could be expected for 
the Raman effect. 

If one takes coi+co3=co&a, the last terms in Eqs. 
(3.17) and Eq. (3.18) dominate. In this case, Eq. (3.19) 
keeps the same sign, but the sign in Eq. (3.20) is 
reversed. There is now positive absorption at both 
frequencies, corresponding to a two-quantum absorption 
process shown in Fig. 1(B). 

Figure 1 (C) illustrates the case that coi<C0, o)z—o)ba 
—a>i. Although the sign of the imaginary susceptibility 
in Eq. (3.19) remains formally unchanged, it now corre
sponds to a negative absorption at |coi|, because the 
sign of wi is negative. The transition from level | a) to 
I b) is accomplished by emission of ho)h and absorption 
of a larger quantum feo3. If the initial populations were 
inverted, p&&(0)—paa

(0)>0, all signs would be inverted 
and all processes would proceed in the opposite direction. 

This problem could also be solved with all powers of 
Hi taken into account. Again, basic physical processes, 
such as parametric and Raman processes, can be 
identified. In the semiclassical theory the Raman 
processes are described by nonlinear complex suscep
tibilities, which are clearly distinguishable from the 
susceptibilities for parametric processes. The quantum 
process associated with the parametric susceptibility of 
Eq. (3.16) is shown in Fig. 1(D). The atomic system is 
purely reactive, and makes no real transition to a state 
with different energy. Although the parametric process 
is illustrated as a three-photon scattering, yet it appears 
in the perturbation calculation in lower order than the 
Raman process. The reason is that it is a coherent 
dispersive effect, rather than an incoherent scattering 
process with a transition probability proportional to 
the square of the matrix element, in which all phase 
information is lost. In a similar manner, the linear 
dispersion corresponds to a coherent scattering. Al-
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though it is often visualized as a scattering in which the 
incoming and outgoing photon have the same frequency, 
it appears in the same order of the density matrix 
perturbation as the single-photon absorption process. 
I t is, strictly speaking, not correct to visualize the 
linear dispersive and nonlinear parametric polarization 
by photon scattering processes in which phase informa
tion is not involved. The phase of the induced polariza
tion at the frequencies coi±co3 is determined by the 
phases of the applied fields at «i and C03, and the number 
of quanta is not precisely known. One cannot decide 
whether there is absorption at the combination fre
quencies, until the phase of the field at these frequencies 
is known. I t is, of course, inconsistent to assume that 
the field at coi±co3 vanishes. Even if originally no field is 
applied at these combination frequencies, such a field 
will be generated by the parametric polarization. To 
obtain a self-consistent description, the reaction of the 
polarization on the electromagnetic modes must be 
taken into account. This will be done in the final 
section of this paper. 

C. Two Rotating Fields and One 
Longitudinal Field 

The two rotating fields have frequencies coi and 0*2, 
and the longitudinal field has the frequency ±co3 

= ± («i—co2). If the method of ascending powers in the 
field amplitudes is used, a straightforward combination 
of cases A and B results. This is the best systematic 
approach to this problem. There is no satisfactory 
truncation procedure if coi and co2 are both close to 
resonance and |coi—co21 is small. The following diagonal 
Fourier components should be retained, (p&&—paa)

dc, 
(Pbb-Paa)i±<ai\ (p6&-paa) (±2w3), etc. The following off-
diagonal components are in the "near-resonance" 
category, Pba^\ p6o<«»>, pha^

l~^\ Pba^1'^, P&a(2w2-Wl), 
p6a(3a,i-2co2)) Phat*»*-toi>9 e t c . 

If three fields at the frequencies coi, w2 and co3=coi+co2 

are applied to a three-level system, a finite number of 
"near resonance" terms can be identified in an unambig
uous fashion. This case is of considerable practical 
interest and will be discussed next. 

IV. NONLINEAR SUSCEPTIBILITY OF A 
THREE-LEVEL SYSTEM 

The steady-state response of a system with a lower 
energy state | a), a middle state | b), and an upper state 

1 
Wba 

Wca 

-Vab 

Vba 

0 
0 

-Vac 

Vca 

1 
— Wab—Wcb 

Web 

Vab 

-Vba 

~Vbc 

Vcb 
0 
0 

1 
Wbc 

— Wac—Wbe 

0 
0 

Vbc 

-Vcb 

Vac 

-Vca 

0 
Vba 

0 
A«5 

0 
0 

V ca 

-Vbc 

0 

0 
-Vab 

0 
0 

Aba 

V ac 

0 
0 

Vcb 

I c) to three applied fields at the frequencies coi, o>2, and 
w3=wi+co2 can be calculated with the general Fourier 
power series expansion method. If the three applied 
frequencies are close to the resonant frequencies, i.e., 
|coi—cobal^Uba, | co2—wc&| <<Ca>c&, and, consequently, 
1^3—o)ca\<£o)Ca, the Fourier series can be truncated in 
an unambiguous fashion. Only the following matrix 
elements of the periodic perturbations are retained, so 
that the truncated Hamiltonian becomes, 

f 0 Vabe™1' Vace™A 
3CCOh= {Vbae-^1 0 Vhee

M[.. (4.1) 
[Vcae-^1 Vcbe-™*' 0 :..].. 

For electric dipole transitions, one has, for example, 
Vab—— fr^ab'Ei, etc. Note that this truncated 
Hamiltonian can be made time-independent by a 
diagonal unitary transformation 3C'= W3Q.U, 

[e*** 0 0 1 
U=\ 0 1 0 L (4.2) 

[ 0 0 er-fatfj 

Wilcox and Lamb22 have solved the three-level problem 
with two applied fields in the transformed representa
tion. The steady-state solution is, however, more 
directly obtained in the laboratory frame. The fact that 
the problem can be reduced to a time-independent 
problem in which each matrix element in the steady 
state is time-independent, suggests that only one 
Fourier component for each element of the density 
matrix will occur in the laboratory frame. This is, 
indeed, the case. Only dc components of the diagonal 
elements of the density matrix are retained, together 
with the following six off-diagonal Fourier components: 
p6a<

wl) and pab^ul)^ Pca("z) and p«c
(-W3), pc&

(t*2) and 
P&c(~~w2). The equations of motion reduce to nine 
algebraic linear equations with nine unknowns. One of 
these equations is , the inhomogeneous normalization 
condition paa

dc+P&&dc+Pccdc=l. With the abbreviations 

A&a = COi—C06a+^Ffto = — Ao6* , 

' Ac6=a>2—Ucb+iTcb^— A&c*, (4.3) 

Aca=co3—a>ca+ir.co= — Aac*, 

the equations of motion are expressed in matrix form 

0 
-Vcb 

Vcb 

0 
-Vca 

Abe 

0 
Vab 

0 

0 
Vbc 

-Vbc 

Vac 

0 
0 

Ac6 
0 

-Vba 

0 
0 

Vca 

-Vcb 

0 
Vba 

0 
Aac 
0 
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0 

-Vac 

0 
Vbc 

0 
-Vab 

0 
Aca 

> • •* 

Haa 

Pibd0 

Pccd" 

Pai<--al) 

P&«(W) 

P i c ^ 

Pcb 

Pac 

Pea 

• = « 

'll 
0 
0 
0 
°f 
0 
0 
0 
oj 
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The solution for the density matrix elements from this 
array of linear equations gives them as functions of all 
powers of the amplitudes of the three applied fields. 
The solution contains, therefore, all possible interference 
effects between single and multiple quantum absorption 
and emission processes and parametric scattering 
processes, as well as all saturation effects of successive 
absorption and re-emission of quanta. 

There are schemes to unravel the complexity of the 
9X10 matrix problem. It is helpful to eliminate first 
Pab, Pbc, and pea, and write the remaining six variables 
as two vectors, 9= (paa,pbb,pCc) and y= (pba,pcb,Pac). 
The remaining six equations can then be expressed as 
two-vector equations multiplied by 3X3 matrices. 
This procedure was used by Wilcox and Lamb22, who 
solved the case of two large applied fields, as did 
Yatsiv.13 It allows for the arrangement of the various 
terms according to the powers of the field amplitudes. 
The expressions are too complicated for reproduction 
here, and are not particularly useful or illuminating. 
If all three fields are very large |F/r|^>>l, a "heat 
death" of the system results, Paa—Pbb^Pcc^h In the 
intermediate situation when several (V/T) and (w/T) 
are of the order of unity, peculiar inversions may occur, 
and even the possibility that pcc—paa>0 cannot be 
excluded in a limited range of field values and relaxation 
parameters. It appears, however, that the price for 
generality of the system (4.4) is too high in terms of 
algebraic complexity. 

It is more useful to consider the more specialized case 
in which all powers of one large field amplitude, say at 
o)3, are retained, but a power series expansion is used for 
the two smaller field amplitudes at o>i and co2. This 
approach was already used by Clogston,15 whose 
calculation we shall follow. We shall not make the 
unnecessary assumption o>3=coca, and shall arrange the 
various terms so that a physical identification is possible. 
First consider the zero-order solution independent of 
the field amplitudes at coi and co2. Consider the first, 
second, third, and last row of the matrix equation (4.4) 
together, with the terms in Vah, Vba, Vbc, and VCb 
omitted. One thus obtains the terms which are in
dependent of the fields at coi and co2. The solution 
consists of the well-known populations for a pumped 
three-level maser, paa

i0), Pbb(0), and pcc
(0), and the 

response of the off-diagonal elements at the pump 
frequency, 

{Poa(0)}(-«)={p«c(0)}(^»)*=Ac«-17ca(pa«(0)-Pcc(0)). 

Consider next the two simultaneous equations for pba 

and pbci i.e., the fifth and sixth rows of the matrix (4.4), 

Vba(Paa(0)-p^0)) + AbaPba(1) 

-VCaPbc<l)+VbcPcam-0 (4.4a) 

F6c(Pcc(0)-p&b(0))+A6cP&c
(1) 

-VacPbaV+VbaPac^-O. (4.4b) 
The solution gives the first approximation to pba and 

pbc, correct to linear terms in the field amplitudes at 
coi and o>2. 

r , vba\vca\*(paa«»-pcc«») 
= Aba-Wba(PaJ°>-pbi«

n)+ 
L Aa<:AbaAbc 

VbcVca(paam-PJ0)) VhcVca(Pbb«»-pcc«»)-y 
-| 1 

AioA«i AjaA&c J 
A&aA&c 

X • - . (4.5) 
A & a A 6 c - | F a c | 2 

This expression contains the same terms as Eq. (25) of 
Clogston's paper.15 There is a similar equation for 
Pc6(1)=P6c(1)*. The terms have been rearranged to 
facilitate their identification. 

The factor outside the square bracket is always of the 
order unity, if the frequencies are adjusted to maximum 
response for a given value of the pump amplitude. If 
the pump field is small compared to linewidth | Vac/T \ 
<<C1, it is obvious that the factor may be replaced by 
unity. If, however, | Vac/T\^>l7 the term has a dip at 
the resonant frequencies coi=a>&a, co2=w&c. I t causes a 
characteristic splitting of the response. This behavior 
is well known from the resonance condition (3.12) in 
the rotating coordinate system. If the frequency is 
adjusted, outside the dip at the center, for maximum 
response, the factor has again a magnitude of about 
unity. 

The first term inside the square bracket of Eq. (4.5) 
has the appearance of a linear response term. The 
population difference paa

(0)—p&&(0) does not have the 
thermal equilibrium value, but is a function of the 
pump power | F a c | 2 . This term represents the maser 
action, when p&&(0)—paa

(0)>0. 
The second term has the appearance of a Raman 

maser effect. A transition from level | b) to | c), while a 
quantum fiwz is absorbed and a quantum haii is emitted, 
would be proportional to Pbb—Pcc- The second term 
includes also the process proportional to paa—pbb which 
has to be added to the Raman transition. I t represents 
the single-quantum absorption associated with a transi
tion from \a) to \b) modified by the simultaneous 
scattering of one or more quanta ficoz. 

The third and fourth terms between the square 
bracket look like parametric terms. A polarization at 
coi is created by fields applied at frequencies co3 and co2. 
These terms, however, do not only represent scattering 
processes in which three quanta take part. They also 
describe interference terms between single-photon and 
Raman processes in the transition probability between 
levels | a) and \b) which are connected by a matrix 
element of the form cVab+c'VacVCb. This gives rise to 
an absorption proportional to Fa&F&cFca. 

This interpretation in terms of elementary quantum 
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processes is already quite complex in this approxima
tion. The illustrations in Fig. 2 should not be taken too 
literally. The macroscopic behavior is, however, 
described by complex susceptibilities of the parametric 
or the Raman type. The former describe a polarization 
induced at a combination frequency by fields applied 
at other frequencies. The complex value of the suscep
tibility determines the phase of the polarization with 
respect to these applied fields. One cannot decide 
whether or not absorption occurs, until the phase of a 
field at the combination frequency is known. The 
Raman-type susceptibility describes a complex change 
in the linear index of refraction proportional to the 
intensity of a field at another frequency. Its imaginary 
part corresponds to positive or negative absorption. 

The solutions (4.5) for pa&
(1) = p&a(1)* and pbc

a) 

= Pc6(1)* can be substituted back into the equations for 
the populations and pac—Pca*- One finds in second 
approximation terms quadratic in the small fields, 
I Vab\2, | Vbc\2, VabVbc, and Fc&F&a. In third approxima
tion one may use the equations (4.4a) and (4.4b) to 
obtain a relationship between p&a

(3) and p&&(2)—paa
(2) 

etc. The labor involved is large, and one might as well 
solve the complete matrix (4.4), if the fields at a>i and 
co2 become comparable to the damping parameters, 
I Fa&,&c/r0&,&c|~i. 

The relative importance of the various terms in 
Eq. (4.5) will now be discussed in some detail. If the 
pumping field is small compared to the linewidth and 
all frequencies are near resonance, the first term is 
dominant. The well-known case of the solid state three-
level maser results. 

The second or Raman-type term will not necessarily 
be larger than the first term, if | Vac \ is chosen very 
large, because the population difference paai0)—pcc(0) 

itself approaches zero. It should be remembered that 
the superscript (0) refers to zero power in the small 
fields only. In fact, the optimum response, i.e., the 
largest value of p&a

(1) is obtained for | Vac
2/A2\ ^ 1 , as 

explained previously. In that case, the Raman term 
has the same order of magnitude as the maser term, and 
precise values for |Fco/Aac | and |Fco/A&c| must be 
known for a detailed comparison in this case. 

There is, however, a situation in which the Raman 
term will always dominate. This occurs when only the 
frequency co2=coc& is at resonance and the applied field 
at this frequency is very small, F&c=0. Because of this 
last condition, the parametric terms vanish. Since the 
frequency coi is off resonance, |a?i—co&a| >r&a, and so is 
the pump field at co3, |coi—co&a| = |co3—coca| > | Vca\ 
> Tea, the imaginary part of the first term, correspond
ing to linear absorption, is r 6 a | A6a|-

2F6o(paa(0) —p&6(0))-
The ratio of the Raman-type term to the linear absorp
tion can easily be made larger than unity, 

I * ea [ \Paa Pec J 

> 1 . 
r»j t a(p«|0»-P6»< B )) 

wj 

. 

W 
Vcb W 

I. * 

FIG. 2. Nonlinear processes in a three-level system. The text 
should be consulted for a correct interpretation of these illustra
tions. A Illustration of a Raman process. B Illustration of a 
parametric process. C Combination of saturation, maser, Raman 
maser, and parametric processes. 

Since the pump field is off resonance, the populations 
have essentially their thermal equilibrium value. If the 
applied pump field is larger than the natural widths r&<. 
and Tba, the Raman process is dominant. This situation 
is shown schematically in Fig. 2(A). The conditions set 
forth are, of course, precisely those under which optical 
Raman laser action has been observed.31 

The parametric terms in Eq. (4.5) can always be 
made dominant, if all three frequencies are well re
moved from resonance. The ratios of the parametric 
term to the linear absorption is, in that case, larger 
than unity, if 

I VbcVcaAba\ 
> 1 . 

I VbaFbarbel 

This can be achieved, even if the pump amplitude is 
smaller than the linewidth. If the amplitude Vba is 
initially very small, a polarization at the frequency coi 
will be created by the larger applied fields at o>3 and o?2. 
This "pure parametric" case is illustrated as a three-
photon scattering process in Fig. 2(B), although 
important reservations about this pictorial representa
tion must be made, as discussed previously. If the 
applied frequencies are far removed from resonance, the 
truncation procedure which led to Eq. (4.5) becomes 
invalid. Eventually, one should return to the general 
Fourier expansion method of Sec. II. 

Thus far, the field amplitudes are assumed to be 
applied externally as given fixed quantities. This is the 
proper procedure in calculating macroscopic suscept
ibilities. If the applied field at coi vanishes, Vab~0, the 
parametric terms in Eq. (4.5) are the only ones left. 
They create a polarization at o>i, which, in turn, will 
generate a field at «i. The assumption Vab=0 is not 
self-consistent. This extreme example clearly shows 
that the question should be considered, how the magni
tude of the fields is in turn determined by the reaction 
of the material system on the fields. 

31 G. Eckard, R. W. Hellwarth, F. J. McClung, J. E. Schwarz, 
D. Weiner, and E. J. Woodbury, Phys. Rev. Letters 9,455 (1962). 
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V. COUPLING BETWEEN THE NONLINEAR MEDIUM 
AND THE ELECTROMAGNETIC MODES 

The question of the reaction of the material system 
back on the electromagnetic modes was treated very 
early by Bloembergen and Pound.32 They considered 
the precessing magnetization in a magnetic resonance 
experiment in turn as a source for the electromagnetic 
mode. This scheme has been further developed by many 
authors.14""16,33,34 Mathematically, the equations of 
motion for the classical harmonic oscillator (s), rep
resenting the electromagnetic mode(s) is (are) added 
to the equations of motion for density matrix elements. 
We restrict ourselves to the electric dipole case and 
expand the electric field in terms of normal modes with 
dynamical variables p\(t), 

E(r,<)=- • ( 4 r ) » « E M 0 E x ( r ) , 
X 

(5.1) 

where the real mode functions constitute a normalized 
orthogonal set, 

/ 
Ex(r).E(1(r)^r=SXM. (5.2) 

Jaynes33 has given an elegant discussion how the semi-
classical approach is related to the exact theory with 
quantized harmonic oscillators. The classical equation 
of motion for the Xth harmonic oscillator may be 
written in the form 

0)\ (4TT)1/2 rd2{¥(r,t)) 
M)+—flx(*)+cox2M0 = Ex(r)Jr 

Qx en J df 

+ H ^ e x t e - ^ + F e x t * e + - 0 . ( 5 . 3 ) 

The damping of the mode due to eddy current losses 
and coupling losses is described by the phenomenological 
term with the quality factor Q\; € and M are the linear 
electric and magnetic susceptibility of the medium, 
exclusive of the terms considered explicitly in the 
expectation value of the polarization 

<P(r,0> = iV rE5P»»'Pn'»(r,0. (5.4) 

The last term in Eq. (5.3) represents an external 
driving source, which consists, for example, of coherent 
signal input or power supplied by an external pump 
oscillator. 

The equations (5.3), after the substitution of Eq. 
(5.4), have to be solved simultaneously with the 
equations of motion (2.1) for the elements of the 
density matrix. Note that 5Ccoii is a linear function of 
the dynamical variable p\(t). I t is still possible to find a 
steady-state solution by expanding all elements pnn

f (t) 
and all variables p\{t) into Fourier series. The pro-

32 N. Bloembergen and R. V. Pound, Phys. Rev. 95, 8 (1954). 
33 E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963). 
34 L. W. Davis, Proc. IEEE 51, 76 (1963). 

cedure, which rapidly becomes very cumbersome, will 
be illustrated with a few examples. 

The case of a microwave or optical maser pumped by 
an incoherent process consists of a two-level atomic 
system and one electromagnetic mode which produces 
an oscillating field at the position of the active particles 
with a density N cm - 3 . There are four simultaneous 
equations to be considered: equations for the dc 
component of the population difference 

Pbb Paa j 

two off-diagonal Fourier compoents of the density, 
P&a(w) = Pa&(~w)* and Pa&(w) = P&a(~w)*, and the Fourier 
component at co of the dynamical variable p\i(a\ belong
ing to the one mode with resonant frequency cox close 
to co. The equation (5.3) for this steady-state component 
can be written explicitly as 

(47r)1/2iVco2 

: / 
OP &a-Ex (r)} 

€ju (—co2+cox
2—icocox/<3x)L 

Xpai>
(»)(r)dt+ f ^ a & - E 1 ( r ) p 6 a ^ ( r ) J r l (5.5) 

The orthonormal properties of the real mode functions 
have been used. The solution of Eq. (5.5) coupled with 
equations for the density matrix elements has been 
described in detail by Fain17 and Davis.34 The oscillation 
condition for a maser is obtained. 

As the next example, we consider the lowest order 
parametric case, treated in Sec. I I . We shall assume 
that there are three electromagnetic cavity modes with 
resonant frequencies u^ close to coi, cox2 close to C02, and 
cox3 close to co3=coi+co2, respectively. When the density 
matrix element equations are solved and expressed in 
terms of the dynamical field variables p\u p\2, and p\&, 
one obtains from Eqs. (2.22) and (5.1) the expectation 
value of polarization as a function of these field var
iables. They may be expressed in terms of the linear 
and nonlinear susceptibilities, 

<P<«i>(r)> 

= -2C(«i)(4ir)8/2-Exi(r)?Xi(wl) 

+ (47r)2xNL(co1=co3-co2): Ex3(r)Ex2(r)^2<-»*WW3) 

<pc«i)(r)) 
= -x(^2)(47r)3/2.Ex2(r)^x2^^ 

+ (47r)2xNL(co2=co3-co1): Ex3(r)Ex1(r)^x1(-^>^x3^3) 

<P<»«>(r)> 
= -x(co3)(47r)3/2.Ex3(r)^x3^) 

+ (47r)22CNL(^3=co1+co2): E x ^ E x ^ r ) ^ ^ ^ . 
(5.6) 

These expressions are substituted into Eqs. (5.3) for 
Fourier components of the dynamical variables, px^^ 
= ^x1

(-wl)*, £x2
(w2) = £x2

(~W2)*, ^ 3 ( w 3 ) = £x3
(~'03)*, which 

are retained. All other Fourier components are con
sidered off resonance and are truncated off. One thus 
obtains a set of equations that describe the lowest order 
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nonlinear coupling between the electromagnetic modes, 

(™^ 1 2 + W x 2_ i c 0 l C O x y ( 2 X i )^ X i ( w l ) 

(4TT)2 

en 
>,<-•>/ «i*#x l

( - l ) /Ex I ( ' ) -x (« i ) -Exi ( r )* 

(4TT) 
5/2 

- M I ^ ' W ^ / B*i(r) 
eM " / ' 

•XNL(^i=^3-co2): Ex3(r)EX2(r)Jr+jFext. (5.7) 

and two similar equations for ^x2
(co2) and ^\3

(w3). The 
integral in the first term on the right-hand side is 
extended over the volume of the cavity mode. It is equal 
to the product of a "filling factor" times the linear part 
of the susceptibility which is not included in e. The 
second term represents the lowest order nonlinear 
coupling. Lamb35 has considered nonlinear coupling 
between modes in a gaseous optical maser using similar 
methods. 

The equations (5.7) are, of course, quite similar to the 
coupled amplitude equations in the paper of Armstrong3 

et al. [compare in particular their Eq. (4.9)]. They are 
algebraic, rather than differential equations, because 
they describe the steady-state response of the system 
to periodic driving forces, and are adapted to nonlinear 
effects in resonator modes, rather than traveling waves. 
They are more general than the corresponding expres
sions of Armstrong et ah, in the sense that they include 
damping mechanisms, both in the nonlinear medium 
and in the cavity walls. The integrals over the volume 
of the sample in the nonlinear term corresponds to the 
condition of momentum conservation or matching 
of the phase velocities for the case of an infinite homo
geneous lossless medium with homogeneous plane 
waves. If one chooses coi=co2, Eqs. (5.7) are well 
adapted to describe the microwave second harmonic 
generation in ferrites, or the harmonic generation in 
laser resonators. 

The procedure is, of course, readily generalized to 
include higher order nonlinear effects, including Raman-
type terms. If the driving terms F are put equal to 
zero, the resulting set of nonlinear homogeneous equa
tions may have a nonvanishing solution, provided a 
random pump field maintains some inversion of the 
populations. If a large input is present at one frequency, 
say co3, one may have oscillation at both smaller 
frequencies simultaneously, due to parametric terms, 
mixed with maser and Raman maser terms. To show 
how all nonlinearities are, in principle, incorporated in 
this formalism, the example of the three-level system 

35 W. E. Lamb, Paper presented at the Third International 
Conference on Quantum Electronics, Paris, 1963 (unpublished). 
See Phys. Rev. (to be published). See also, H. Haken and H. 
Sauerman, Z. Physik 173, 261 (1963). 

in Sec. IV is re-examined. The three fields at coi, 0)2, 
and o)3 are assumed to arise from the excitation of three 
different electromagnetic modes with resonant fre
quencies coxj close to coi, cox2 close to o>2, and co\3 close to 
co3. Only near-resonant Fourier components of the mode 
dynamical variables are retained. The reaction of the 
material system on the fields is, therefore, taken into 
account, if the following three mode equations are added 
to the nine density matrix element equations (4.4). 

(4TT) 1 / 2 (€ J U)- 1 COIW r 

PxS"*- — /CJ$a&.EXl(r)) 

PM («2) = 

h («3) = 

— co^+wx!2—icoo>xi/<2\i J 

Xpfca(wl)to*+F<«*> 

(47r ) 1 / 2 (e M ) -WiV r 
— (5JJ&c.EX2(r)) 

— C022+cox2
2~iw2cox2/<3x2 J 

(47r) 1 / 2 (€ M ) -WiV 
0 5 a c . EX3(r)) 

— co3
2+cox3

2—tuzoo\3/Q\3 , 

Xpca ( w 3 )«dr+F^). (5.7) 

The off-diagonal matrix elements, solved from Eqs. 
(4.4) as a function of all powers of ^Xi(±col), p\2

(±(a2\ a n d 
p\3

(±0}3\ may be substituted into Eq. (5.7). This type 
of description is appropriate for Kellington's experi
ment.36 The algebraic equations that result can, in 
principle, be solved for the components p\i±w). Because 
of the formidable nonlinearities on the right-hand side, 
approximate procedures have to be invoked. We do not 
believe, however, that Clogston's procedure,15 in which 
only linear terms in p\^wl) and p\2

io}2) are retained in 
the reaction field, can be a satisfactory description of 
maser oscillators. 

VI. CONCLUSION 

General expressions for complex nonlinear susceptibil
ities in the presence of damping have been derived 
which describe simultaneously parametric, maser, and 
Raman maser effects. If the applied fields are near 
resonances of the atomic system and have a magnitude 
equal to or larger than the linewidths, the different 
effects become inextricably mixed. It is still possible to 
consider the total polarization, which is a mixture of 
all linear and nonlinear effects, as a source term reacting 
with the electromagnetic fields. Joint equations of the 
dynamical variables of the modes and the density 
matrix elements of the general nonlinear medium can 
be written down, although explicit steady-state solu
tions require the retention of only a few terms in a 
Fourier series expansion, truncation of nonresonant 
terms, and other approximations. 

36 C. M. Kellington, Phys. Rev. Letters 9, 57 (1962). 


